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Abstract

The ability to learn abstract concepts and to quickly grasp logical rules are hallmarks
of human intelligence, yet these traits are difficult for neural networks. In our work we
take a backward design approach and we develop a neural framework based on abstract
principles, in order to learn abstract rules. Our model uses a Differentiable Neural Computer
in order to capture algorithmic logic and allow true computation. We apply spectral norm
regularization, which adds preference to functions with low complexity, which we use as a
proxy for abstraction. Model-agnostic Meta-learning is employed to adapt parameters to a
given task at test time. We show that our approach outperforms classical baselines on the
Abstraction and reasoning corpus, a few-shot pattern manipulation benchmark.

Summary

People have the ability to quickly learn abstract concepts and infer complex logical rela-
tionships with just a few examples. Ideally, programs based on Artificial Intelligence should
also be capable of abstract reasoning, yet this is currently difficult to achieve with neural net-
works. The aim of our work is to design a neural framework for abstract reasoning. Instead of
thinking about how to make neural networks learn abstract rules, we take a backward design
approach – we implement abstractions from computer programming and human learning
in neural networks. We show that this approach outperforms existing benchmarks and has
potential to bring us closer to abstract logical reasoning in neural networks.



1 Introduction

Deep learning methods are powering the current wave of artificial intelligence research.

They rely on neural networks – universal function approximators with parameters that are

tuned with gradient-based optimization methods. Neural networks1 are able to learn complex

relationships in data, even surpassing humans in some tasks related to object classification

[1] and speech recognition [2]. Deep learning methods have also beaten human champions

in strategy-based games such as Go [3], Chess [4] and Starcraft [5], which require learning

abstract features and strategies.

Many of these achievements, however, rely on extensive, incremental training on a large

data set. This often leads to over-specialization (overfitting) and neural networks exhibiting

poor performance on related tasks (domain generalization [6, 7, 8, 9, 10, 11]). For example,

a network trained to play the ATARI game Breakout is not able to generalize to play Pong,

despite the similarities between the two – both involve moving a platform to hit a ball.

However, applying acquired knowledge to other domains is seen as one of the hallmarks

of human intelligence [12] and grasping concepts from very few examples is a desired trait

of intelligence [13]. Let us consider the definition of intelligence for AI in [14], namely

Intelligence measures an agent’s ability to achieve goals in a

wide range of environments.

In order for neural networks to be considered intelligent by the above definition, it is

important that they learn abstract rules, instead of exploiting coincidental relationships in

data (i.e. identifying a picture of a cow by the grass background behind it [15]). We define

an abstract rule (abstraction) as a principle that is agnostic to the object it is applied to.

A recently proposed benchmark, the Abstraction and Reasoning Corpus [16], addresses

this dissonance and measures the performance of machine learning methods on a large set

1For the sake of clarity of the argument, we abuse language and refer to decision-making agents with
policies, parametrized by a neural network, as neural network agents or simply neural networks.
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of abstract logical problems. For instance, consider a task, in which a pattern needs to be

singled out for being different from the rest (see example in Figure 2). The decision-making

agent (in our case – the neural network) is presented with a small number of examples and

has to infer the logical rule from them. The agent is then tested for the correctness rule.

Naturally, we are under the assumption that a unique set of rules exist that explains the

relationships between task inputs and task outputs.

Currently, the best performance on the Abstraction and Reasoning Corpus is 19% accu-

racy (it solves 19% of all tasks correctly). This is achieved with decision trees, which, unlike

neural networks, are not universal function approximators and could not hope to scale to

higher-dimensional objects or higher-order logic. In contrast, the best neural network-based

solution achieves only 1% accuracy. 2

The aim of our work is to develop neural network models, capable of abstract reasoning.

We look at the challenge backwards – instead of thinking how to train neural networks to

reason abstractly, we develop a framework for incorporating abstractions in neural networks.

Abstraction performance is measured on the Abstraction and Reasoning Corpus.

Our approach relies on three components:

1. Memory-augmented neural networks, namely the Differentiable Neural Computer [17].

They allow us to execute programs with memory complexity, in addition to computa-

tional complexity;

2. Optimization-based meta-learning, which enables us to adapt rapidly to new environ-

ments and tasks using additional inner optimization steps;

3. Complexity regularization, which biases the network to learn simpler (as measured by

a complexity measure) and smoother functions. The underlying intuition is that the

function with smallest complexity would be the most abstract.

2Both results are presented in kaggle.com
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2 Preliminaries

Meta-learning

The goal of meta-learning is to learn a mechanism for rapidly adapting to new tasks. A

meta-learning problem consists of training and evaluation tasks. Each task has a train set

and a test set. A meta-learning model will learn to solve the training tasks and generalize

learnt rules to the evaluation set. It can also adapt to the evaluation using the train dataset

of each of the tasks.

From a probabilistic perspective, successful meta-learning involves extracting prior infor-

mation from a set of training tasks, which allows the model to efficiently derive posterior

knowledge about a task given only a few examples.

One method for carrying out this adaptation is with additional “inner” optimization

steps, such as in Model-Agnostic Meta-:earning [18] (Figure 1). Consider a neural network

fθ with parameters θ. It has to minimize a loss objective L(fθ) on a set of tasks T

θ∗ = arg min
θ

E
T∼T

[
LT (fθ′)

]
where θ′ are parameters derived with k steps of gradient descent from the initial param-

eters θ0 = θ and step size β

θi+1 = θi − β∇θiLT (fθi)

Figure 1: Intuitive illustration of the MAML algorithm. 3
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Another method for meta-learning is using Memory-augmented neural networks (MANNs)

[19]. These networks implement differentiable external memory, equipped with addressing

mechanisms that allow it to be indexable. Additionally, memory capacity is easily scalable,

permitting large amounts of information to be encoded instantly. This allows them to func-

tion as a structured cache, which can be used for adaptation by retrieving relevant stored

information.

While memory-based meta-learning has shown a lot of promise, it has a fundamen-

tal limitation – an upper bound of adaptation exists, since memory is finite. In contrast,

optimization-based meta-learning has no such bound, as it adapts parameters and it can

therefore approximate the task arbitrarily well, as per the universal approximation theorem.

The Abstraction and Reasoning Corpus

The Abstraction and Reasoning Corpus (ARC) [16] is a dataset of grid-based pattern

recognition and pattern manipulation tasks (Figure 2). A decision-making agent sees a small

number of examples of input and output grids that illustrate the underlying logical rela-

tionship between them. It then has to infer this logical rule and apply it correctly on a test

query.

In many ways, the benchmark is similar to the Bongard problems (view [20]) – relations

are highly abstract and geometric. Moreover, only 3-5 examples are presented for each task,

therefore, the benchmark tests the ability of an decision-making agent to (i) grasp abstract

logic and (ii) adapt quickly to new tasks.

There are 400 training and 400 evaluation task examples, structured as follows:

• each task consists of a train and a test set;

• the train set includes 3-5 input/output pairs;

• the test set includes 1 input/output pair;

3Source: Finn et. al [18]
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Figure 2: A visualization of a task from the ARC (“crop” task – one of the patterns is
different from the others and we want to identify it). Two training examples and one test
example are provided. The decision-making agent receives an input and has to predict the
output.

• an input/output pair is comprised of an input grid and an output grid, the relation

between which follows a consistent logic throughout the task;

• grids are rectangular and are divided into 1× 1 squares;

• grid patterns are drawn with 10 colors;

• grid sizes vary between 1 and 30 in length and width; input and output grid sizes are

not necessarily equal.

No set of rules exists that can solve all tasks, and while some skills are useful for multiple

of them, each task has its own unique principle. This makes trivial approaches like brute-force

computation impractical.

If a human was approaching those tasks, they would easily be able to spot logical relations

– we have developed the necessary priors to find similarities and infer logic. Therefore,

ideally the neural network would derive this prior during training, and that would allow it

to generalize well to the evaluation dataset.

For the current scope of our research we use all tasks with grids of size not larger than

10× 10.
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3 Methods

Grid Embedding

Before we can utilize meta-learning, data should first be pre-processed. We embed the

grids in a 256-dimensional vector space for performing the learning using an autoencoder – a

neural network compresses the input grid and then needs to decompress it. It consists of an

encoder Eθe with parameters θe, and a decoder Dθd with parameters θd. Let G ∈ {0, 1}C×H×W

be a grid, in which colors are represented by one-hot vectors. The autoencoder learns a

lossless embedding, therefore it requires no labelled data (unsupervised learning). It outputs

a a grid prediction Ĝ that is a probability distribution over possible colors. If we consider

that pixel p ∈ G is color c and pc′ represents the score of color c′, then we want to find

optimal parameters θ∗ that minimize the negative log-likelihood of color c

θ∗ = arg minL(θ) =
∑
p∈Ĝ

− log

(
epc∑
c′ e

pc′

)

No labelled data is required, which this is referred to as unsupervised training. The au-

toencoder outputs a probability distribution over all of the colors and the goal is to minimize

the negative log-likelihood of the correct color.

We utilize an architecture, inspired by InceptionNet [21] – we utilize multiple filter sizes

for the convolutional layers, thus capturing features and patterns of different scales. We

linearly interpolate the convolutional outputs with weights, obtained from an independent

neural network that determines the relevance of each convolution in the context of the input

grid and its patterns. This approach bears similarities to a self-attention mechanism [22],

where a score of relative importance is computed for each attribute in an object.
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Figure 3: The DNC architecture. For more details, see Appendix B

The Differentiable Neural Computer

With the grids embedded, we need to capture the logical rules that relate an input grid

embedding to an output grid. In computer programming, abstraction is achieved through

utilizing variables, however that is not feaseable in traditional neural networks due to com-

putation and memory being co-dependent.

This problem can be solved with external differentiable memory. We utilize a well-

established memory-augmented neural architecture, the Differentiable Neural Computer [17]

(Figure 3). It implements an external memory matrix with structure and functionality simi-

lar to a dictionary. This allows us to separate memory operations and computation, and use

variables.

The concept of variables is what provides abstraction in algorithms, as they make it
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agnostic to the datum. Therefore, a neural network capable of abstract reasoning would

need to manipulate variable-like structures. Other architectures, such as Recurrent Neural

Networks (neural networks that retain their hidden state and use it for the next input), do

not natively permit this. Since they lack mechanisms for indexing, they use the whole hidden

state, which includes information that is not directly relevant to a given task. Additionally,

an RNN’s “working memory” (its hidden state) is tied to the number of parameters, hence

there is a practical computational bound to the information it can store at once.

Spectral Norm Regularization

While the internal structure of the Differentiable Neural Computer enables it to theoret-

ically learn more abstract computation, it also makes it more unstable. Hence, it needs to

be regularized to learn abstract relations. We employ spectral norm regularization [23, 24],

which places a penalty on the spectral norms of the weight matrices of the networks.

The spectral norm of a matrix is defined as

σ(W ) = max
ε

||Wε||2
||ε||2

which corresponds to the largest singular value of the matrix W . Spectral norm regulariza-

tion can have two interpretations – on one hand, it is reducing sensitivity towards random

perturbations (noise). On the other hand, it penalizes large singular values, thus constraining

the Lipschitz constant of the function, thereby adding bias towards “more linear” functions.

Intuitively, this limits how fast the value of a function can change.

Referring to computer programming again, let us analyze the shortest possible program

(in an arbitrary language) that solves a given task. If more lines were added, they would

either decrease efficiency (undesired) or impede abstraction (by over-specialization to a sub-

set of tasks). The neural networks should therefore approximate the algorithm with lowest

Kolmogorov complexity (program length). Spectral norm regularization adds bias in favor

of functions with lower Lipschitz constants and lower singular values, which is closely re-
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lated to Kolmogorov complexity. Hence, spectral regularization is theoretically grounded in

aiding networks to achieve greater abstraction, while the same could not be said for other

regularization techniques such as L2(W ) = ||W ||2 =
√∑

i

∑
j w

2
i,j.

Computational meta-learning algorithm

As we already utilize a DNC, the MANN for meta-learning approach from [19] (memory-

based meta-learning) is natural. However, the DNC is already using memory for storing

variables, hence we face an information throughput bottleneck if task adaptation is com-

pletely memory-reliant.

To alleviate this, we perform additional optimization steps with the Model-agnostic meta-

learning (MAML) algorithm [18]. In this manner, the memory operations and the computa-

tional process are tuned to the task. More details can be found in Algorithm 1.

Algorithm 1: Computational Meta-Learning

p(T ) distribution over tasks
Hyperparameters: α, β step sizes; k number of steps
Randomly initialize θ
while not done do

Sample task Ti ∼ p(T )
Ti = {Di,Ditest}
Form input data for DNC X t = (XD

t , y
D
t−1)

θ0 ← θ
for j in 1:k do

for t in 1:|Di| do

ŷt = Nθj−1

(
Xt|Xt−1, . . . , X1

)
end
Evaluate ∇θj−1

LDi(ŷt, yt)
Adjust parameters θj ← θj−1 − α∇θj−1

LDi

end

Compute ŷtest = Nθk
(

(Xtest, yt)|Xt, . . . , X1

)
Update θ ← θ − β∇θL(ŷtest, ytest)

end
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Net
Training Dataset Evaluation Dataset

Pixel Grid Pixel Grid

RNN-WD 81.12% (±0.13) 0.86% (±0.02) 78.28% (±12.45) 0.88% (±2.19)
RNN-Sp 92.64% (±0.05) 6.53% (±0.31) 90.51% (±8.24) 5.96% (±8.38)
Att-WD 86.25% (±0.08) 1.31% (±0.05) 83.03% (±10.42) 1.31% (±5.95)
Att-Sp 99.93% (±0.02) 96.29% (±0.82) 99.12% (±1.76) 79.14 % (±23.78)

Table 1: Performance of grid embedding networks. It is evaluated based on pixel accuracy
(what part of the pixels are predicted correctly) and grid accuracy (the percentage of all
grids that are reconstructed perfectly; one wrong pixel labels the grid incorrect). Numbers
in parenthesis indicate one standard deviation, as measured on 10 runs.

4 Results

We train embedding separately of meta-learning, and so we present results independently.

Autoencoding performance

Two architectures – Att and RNN – are tested to embed the grids, both utilizing a basket

of convolutional layers with different filter sizes. Att uses an “attention-like” weighted sum

to combine the convolution outputs (as presented in Methods), while RNN processes them

sequentially with a Long-Short Term Memory network [25]. Dropout [26] is used in both

variants and they are tested with standard weight decay regularization (L2 matrix norm)

[27] or spectral norm regularization [23]. Results are presented in Table 1.

The best performance is achieved with Att-Sp, which we attribute to spectral norm reg-

ularization biasing the network towards an optimum with low Kolmogorov complexity and

high abstraction, as well as the commutativity of the attention mechanism. Additionally,

we test Att-Sp with tanh and ReLU activation functions. The latter is less robust to Gaus-

sian noise, presumably because ReLU is unbounded, while tanh is asymptotically bounded,

hence small perturbations in tanh would not have any effect when the function argument

approaches ±∞.
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Figure 4: Training curves for each of the networks. On the left they are trained only on the
“crop” task (single skill), and on the right – on the whole ARC dataset.

It is noteworthy that performance of Att-Sp degrades on the test set, meaning that it

has overfitted to the train set. The classic interpretation of this is “bad” training, however

in this case it is possible that the autoencoder has learned to recognize the patterns in the

training dataset and compresses them in a structure similar to a hash table.

Computational meta-learning experiments

We compare our approach (DNC-MAML) with the following baselines:

• MAML with a feed-forward network (FF-MAML)

• memory-based meta-learning with an LSTM and MAML steps (LSTM-MAML)

• memory-based meta-learning with a DNC, no MAML optimization steps (MANN )

All models are evaluated on a single skill (“crop” task, Figure 2) and on the whole dataset.

Results are presented in Figure 4. Performance is measured by the achieved mean squared

error loss.

The worst performer is FF-MAML, which is in line with our hypothesis that memory

is required to infer the task solution. Without MAML, the DNC also achieves worse per-

formance, confirming our postulations that memory throughput is a bottleneck. Whether
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this limitation can be alleviated with multiple write heads or a substantially larger memory

matrix is a subject of further study.

While the DNC-MAML model is the best-performing, it still achieves less than 1% grid

accuracy, which is comparable to other parametric approaches to the ARC dataset, but more

work is needed to stabilize the networks.

5 Related Works

Regarding abstract problems, there has been work on training networks on multiple choice

questions for pattern expansion. In [28] they embed patterns with an RNN to determine

which of 4 possible answers has the highest probability of correctness. We experimented

with such an approach but found that an attention-like mechanism yields better results.

Another approach in literature is Neural Module Networks [29]: different modules are trained

independently and to solve a task, a composition of them is derived with meta-learning. This

argument is expanded in [30] with Graph Neural Networks [31, 32] to provide a further level

of abstraction by deriving the graph that corresponds to the optimal function composition.

While such a modular approach is promising, the large number of skills required for the ARC

makes it impractical.

Domain generalization is also related to our work, since each task is effectively a new

domain. In [33] meta-learning is used to model a regularization function, which is key for

generalization. In contrast, we use a fixed regularizer, as it is theoretically grounded and

related to program complexity (Kolmogorov complexity).

The DNC has been exploited for meta-learning in [19], using memory to adapt to the

current task, without modifying parameters. We found that this proved insufficient for the

task, so we instead rely on the DNC for implementing abstract computational logic and

update parameters accordingly.
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6 Conclusion and Future Development

We developed a model with built-in abstractions for computation and showed that it

outperforms existing models on the Abstraction and Reasoning Corpus dataset. We com-

bined two meta-learning approaches, memory-augmented neural networks, and theoretically

grounded complexity regularization, and we showcased that our framework has potential for

algorithmic and abstract learning. Possible practical implications include general-purpose

robots and general intelligence.

Subject of further work could be to combine our approach with Neural Module Networks

[29], in order to embed multiple priors relevant to logical reasoning, in a sense develop-

ing basis skills, from which to derive all other tasks. Expanding the DNC with multiple

write heads and larger memory are also worthy of additional analysis. Challenges in front

of that include that addressing mechanisms become exponentially more unstable as memory

size grows. Possible solutions are to use sparse memory, pre-training read and write mech-

anisms, and utilizing hard indexing (non-differentiable, therefore gradient-free mechanisms

have to be used). Lastly, a more mathematically-rigorous embedding module, such as with

Symmetry-Based Disentangled Representation Learning [34], could provide a better latent

representations, which are key to successful meta-learning.
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A Grid Embedding

Prior to embedding, we zero-pad all grids to be 10×10, with the original grid in the center

of the image. Additionally, colors in the grids are represented as one-hot vectors, making the

final dimensionality of the grids 10× 10× 10 (10 colors).

The embedding is done with a convolutional neural network, comprised of an encoder

and a decoder. The encoder consists of a basket of 10 convolutions of filter sizes equal to

1, . . . 10 (the C module). The convolution outputs are flattened and passed to linear layers

with hyperbolic tangent activation functions (used to normalize the embedded grid space by

constraining it to [−1, 1]), which transform them into the desired dimensionality (n = 256).

A second neural network R computes weights for summing the 10 resulting vectors. The

decoder shares the same architecture with the encoder, but in reverse order – first linear

layers, after that convolutions and then a weighted sum; finally a softmax over the color

dimension.

Summing the convolutional outputs enables the embedding network to be agnostic to the

order in which it receives them (as would be with an RNN for instance). The weighs reflect

the fact that grid sizes vary and therefore not all filter sizes would be equally applicable or

useful. In a sense, the weighted summing can be regarded as a self-attention mechanism [22].

B Differentiable Neural Computer

The Differentiable Neural Computer (DNC, Figure 3) implements an external memory

matrix in a traditional RNN model, whilst preserving full end-to-end differentiablility. The

memory has the following features:

• content-based lookup - the DNC writes and reads information based on a search key

from the controller
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• dynamic memory allocation - information is written based on the free space in each

memory location (row of the matrix)

• memory deallocation - information can be deleted from memory after it is read

• multiple read heads - information is read by multiple read heads, each with a different

search key

The content-based lookup mechanism makes the DNC resemble a dictionary data struc-

ture, since it uses soft attention to choose the memory location that is closest to the search

key (measured by the cosine similarity). Hence, the attention vector is effectively an index.

Here we elaborate in greater detail about each of the mechanisms of the DNC.

At each timestep, the LSTM controller receives an input Xt and read vectors. The con-

troller then emits an output vector and an interface vector. The latter determines what new

information is written in the memory matrix and what is read for the next timestep. After

the new data is read, it is processed with the output of the controller to from the final DNC

output yt.

Interfacing with the memory

The aforementioned interface vector ξt carries the necessary instructions for the read and

write heads. It is split as follows:

ξt =[kr,1t , . . . ,k
r,R
t , β̂r,1t , . . . , β̂r,Rt , m̂r,1

t , . . . , m̂
r,R
t , µ̂1

t , . . . , µ̂
R
t , s

φ,1
t , . . . , sφ,Rt , sb,1t , . . . , s

b,R
t ,

kwt , β̂
w
t , m̂

w
t , êt, vt, f̂

1
t , . . . , f̂

R
t , ĝ

a
t , ĝ

w
t ]

where

• kr,it ∈ RW is the lookup key for read head i; lookup keys act as search terms and are

used in the content-based lookup mechanism
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• βr,it = oneplus(β̂r,it ) ∈ R4 is the key strength of read head i; keys are assumed to have

different impact and this is reflected in their key strength

• mr,R
t = σ(m̂r,R

t ) ∈ RW is the search mask for read head i; the lookup key might

only include a partial information to seek in the rows of the memory matrix, similar

to keywords. Subsequently, it is imperative that the rest of the key is masked, as to

prevent noise in the lookup operation.

• kwt ∈ RW is the lookup key for the write head

• βwt = oneplus(β̂wt ) ∈ R is the key strength of the write head

• mw
t = σ(m̂w

t ) ∈ RW is the search mask for the write head

• et = σ(êt) ∈ RW is the erase vector, which governs how information is erased

• vt is the write vector, containing information that is to be written

• f it = σ(f̂ it ) ∈ R is the free gate of read head i, which determines whether the most

recently read-from location by the read head can be freed or not

• gat = σ(ĝat ) ∈ R is the allocation gate, which controls how much will be written based on

the allocation manager’s output and how much based on the content lookup mechanism

• gwt = σ(ĝwt ) ∈ R is the write gate, which regulates how strong the write weighting is.

Read and Write Heads

Reading from Memory

The purpose of a read head is to efficiently obtain the demanded from the controller

information from the memory matrix. To do so, each read head outputs a read weighting

4oneplus(x) = 1 + ln(1 + ex)
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wr,it ∈ ∆N , where ∆N := {α ∈ RN |
∑N

i=1 αi ≤ 1} is the N -dimensional unit simplex. This

weighting determines the locations from which the head will read data from. Therefore, the

read vector of the head i is:

rit = MT
t w

r,i
t

Writing in Memory

Similarly, the write head computes a write weighting wwt ∈ ∆N , which encodes the

locations to be overwritten. The write head receives from the controller a write vector vt

and an erase vector et to update the matrix. Based on the formerly read from location and

free gates, dictating whether that data is still necessary, the write head constructs the vector

ψt ∈ RN , which removes unneeded information from memory.

Mt = Mt−1 ∗ ψt1T ∗ (E− wwt eTt ) + wwt v
T
t

where ”∗” is element-wise multiplication and E ∈ RN×W is a matrix of ones.

Content-based Lookup

Content-based lookup implements a mechanism for searching in memory. It uses a key

k ∈ RW , a key mask m that prevents noise from impacting the search process and, finally,

a key strength β (the importance of the keyword).

We define the content-based lookup operation as:

C(M,k,m, β) = softmax
[
D(k ∗m,M ∗ 1m)β

]
where D(u, v) is the cosine similarity

D(u, v) =
uTv

|u||v|+ ε
=

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i + ε

u, v ∈ Rn are vectors and ε is added for numerical stability in computation.
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Dynamic Memory Allocation

Just like computers with Random-access memory, the DNC utilizes a dynamic memory

allocation mechanism, which dictates where new information is written.

The allocation manager receives the read weightings wr,it−1, i ∈ 1 : R from the previous

timestep and R free gates f it ∈ [0, 1] from the interface vector. It then computes the vector

ψt, which shows how much of the most recently read-from location will remain after the

memory update.

ψt =
R∏
i=1

1− wr,it−1f it ψt ∈ [0, 1]N

The next step for the allocation manager is to update its usage vector ut−1 (per-row usage).

Since the last update, additional memory has been written in wwt−1 and some data that has

been read can be discarded. Therefore, the update takes the following form:

ut = (ut−1 + wwt−1 − ut−1 ∗ wwt−1) ∗ ψt

After that, an index vector ςt is constructed that contains the memory locations in ascending

order of usage (ςt[1] = arg mini ut[i]), so that the rows that are least used get more data

written. Finally, the allocation vector at, signifying where new data should be written, is

calculated as:

at
[
ςt[j]

]
=
(

1− ut
[
ςt[j]

]) j−1∏
i=1

ut
[
ςt[i]
]

Write Weighting

Along with the allocation vector, the write head can also choose to write based on content

and so, we also have a content write weighting

cwt = C(Mt−1,k
w
t ,m

w
t , β

w
t )

The allocation gate gat linearly interpolates the content weighting and the allocation vector.

The write head could also choose not to write at all, therefore the gate gwt is used.

wwt = gwt

(
gat at + (1− gat )cwt

)
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Read Weighting

The read head utilizes content-based lookup. The i-th read head computes its read weight-

ing as

wr,it = cr,it = C(Mt,k
r,i
t ,m

r,i
t , β

r,i
t )
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