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Abstract

Memory-augmented neural networks have shown great potential in solving algorithmic and

simple tasks, yet they have not been thoroughly tested on classic reinforcement learning

problems, such as ATARI games, notwithstanding the abundance of similarities between

them and a von Neumann architecture, or even the human hippocampus and cerebral cor-

tex. In this paper, we show preliminary results that, when incorporated in RL algorithms,

the Differentiable Neural Computer, the paramount memory-augmented machine learning

architecture, achieves outstanding performance both in terms of training efficiency and in

robustness to noise. Furthermore, we believe that this model is key for surpassing human-

level performance in computational tasks, such as the ATARI game Montezuma’s Revenge.

Moreover, the DNC has potential to be able to train directly from ATARI RAM state, rather

than pixel inputs, which is currently an unsolved problem. Finally, the external memory

implementation in the model allows for extensive analysis of the data structures stored there,

which enables us to gain invaluable insight into the processes inside of the black box that is

a neural network.
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1 Introduction

While neural networks have been quite successful at function approximation, they have, for the
most part, overlooked two of the main principles of computing [19] - control flow (branching)
and external memory, instead relying solely on arithmetic operations. While sufficient for some
tasks, this limitation is what causes poor learning in some RL problems such as the ATARI game
Montezuma’s Revenge [12], which are computational in nature, rather than arithmetic.

A direct implementation of branching would introduce a point of non-differentiablility, due to
the fact that the condition itself is indifferentiable, which impedes the backpropagation pass
and makes the use of gradient descent highly impractical. Nevertheless, integrating dynamic
external memory has been achieved - the Differentiable Neural Computer (DNC) architecture
[4] has managed to implement a memory matrix, akin to random-access memory in a traditional
computer. Furthermore, as a result of a content-based lookup operation, DNCs can emulate
a conditional statement. Moreover, all of this is attained whilst maintaining full end-to-end
differentiablility, hence it can be easily and efficiently trained using backpropagation.

Taking into account that the Recurrent Neural Networks used in the DNC are Turing complete,
this means that the architecture can be regarded as a general problem solver, a von Neumann
architecture with learning capability. Additionally, the DNC decouples the learning process and
the memory operations, unlike RNNs such as Long-Short Term Memory networks, which enables
it to solve problems of exponentially greater complexity.

In a sense, the DNC bears resemblance to the human hippocampus and cerebral cortex - the DNC
controller acts as the hippocampus, since it is responsible for decision making and interacting
with the memory, which is, in turn, the cerebral cortex. This analogy between the two provoked
this research into the capabilities of the architecture to learn by interaction in an environment,
just as a human would. In addition, it is shown that the rewards in reinforcement learning are
functionally comparable to dopamine [2], further strengthening the resemblance.

This application of the DNC in reinforcement learning has been briefly examined by the original
authors, yet they only touch on hand-coded, simple problems, which by no means exhaust the
vast potential of the architecture. To the best of our knowledge, the DNC has yet not been
tested on classic autonomous agent RL tasks.

In this paper we show initial results that the Differentiable Neural Computer exhibits great
performance on benchmark reinforcement learning tasks, such as classic control problems and
ATARI games, training with outstanding speed. The principal objective of our work is to gain
insight into the procedures that the neural network learns and stores in memory and develop a
stable and robust RL architecture that is capable of deriving not only arithmetic routines, but
also computational operations.
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Figure 1: Illustration of the our memory-augmented RL architecture.

2 Preliminaries

2.1 Reinforcement Learning

We consider a standard reinforcement learning setting - an agent interacts with an environment,
aiming to maximize total discounted reward. Formally, these interactions are modelled as a
Markov Decision Process, defined by a tuple (S,A,P, r), where S is the state space; A is the
set of actions; P : S × A × S → R+ is a the probability function, mapping a state s and action
a to next state s′; r : S × A → R is the reward that the agent receives at each timestep of the
episode. The agent’s actions are determined by a policy π, which we model as a neural network,
parameterized by a vector θ.

The objective of the agent is to maximize his expected reward for the episode

T∑
t=1

E(st,at)∼p(st,at)[r(st, at)]

We define a trajectory τ as a sequence (s1, a1, s2, a2, . . . sT , aT ) and the objective can be rewritten
as

max
θ

: Eτ∼p(τ)[r(τ)]
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Therefore, by interacting with the environment and modifying its policy accordingly, the agent
learns an optimal policy πθ∗ .

2.2 Recurrent Neural Networks

Recurrent neural networks are a class of models, where connections between nodes (RNN cells)
can be represented as a directed graph along a temporal sequence. In their basic form, RNNs
are a recursive application of a function, approximated by a neural network, taking an input at
each timestep of the sequence along with a recurrent hidden state, determined by the previous
timestep. In this paper, we utilize extensively LSTM networks [6], which have been developed to
capture long-term temporal dependence, a task that is virtually impossible to accomplish with
traditional RNNs in practice.

RNN Cell

��

��

ℎ�−1
RNN Cell

��+1

��+1

ℎ� ℎ�+1

A standard recurrent neural network model.

Each layer of a LSTM cell consists of an input, forget, output and state gates, with an additional
internal cell state that is passed along all timesteps. The input gate determines what part of
the vector will be added to the cell state, while the forget gate is responsible for nullifying
redundant and unnecessary information in the cell state of the previous timestep. A third state
gate transforms the input into a practical and convenient for the cell state form. The three
gates explained so far govern the cell state update of the LSTM. The last gate, the output gate,
governs the transition from the newly derived cell state to the layer output.

The model can be formalized as follows:

ilt = σ(Wi[x, h
l−1
t , hlt−1] + bi)

f lt = σ(Wf [x, hl−1t , hlt−1] + bf )

slt = f lts
l
t−1 + ilttanh(Ws[x, h

l−1
t , hlt−1] + bs)

olt = σ(Wo[x, h
l−1
t , hlt−1] + bo)

hlt = olttanh(slt)
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where itl is the input gate at timestep t and layer l; f tl is the forget gate; stl is the LSTM state;

otl is the output gate; hlt is the LSTM output; σ is the sigmoid function, σ(x) =
1

1 + e−x
; tanh

is the hyperbolic tangent function tanh(x) =
ex − e−x

ex + e−x
.

��−1 ��

��

ℎ�−1

forget
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input
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output
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with new
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The structure of a LSTM cell.

At first glance, utilizing a RNN model in RL would seem unnecessary, given the Markov property
which states that knowing the current state is sufficient for proceeding forward in the process,
therefore past states can be forgotten. However, this holds true solely for first order MDPs
and full observability, which is often not the case. Furthermore, even when these conditions
are satisfied, system parameters are still unknown and have to be derived though observation;
upon the use of a RNN, we would get a cleaner signal and more precise dependencies in the
data.

2.3 Turing Machines

A Turing machine is a mathematical model of computation that defines an abstract machine,
which manipulates symbols on a strip of tape according to a set of rules, thereby simulating
the logic of an arbitrary algorithm through the rule table. In essence, it is equivalent to a
modern computer, insofar as it can solve any problem that it can, however greatly simplified
operations-wise, as to accommodate mathematical analysis and proofs.
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More formally, a Turing machine is defined as a 7-tuple

M = (Q,Σ,Γ, δ, q0, B, F )

where

• Q is the (finite) set of states that the turing machine can operate in

• Σ is a (finite) set of possible input symbols

• Γ is the complete set of symbols, Σ ⊂ Γ

• δ is the transition function; if defined, it takes the form of:

δ(q,X) = (p, Y,D)

q is the current state, X ∈ Σ is the input symbol, Y ∈ Γ is the symbol being written in
place of X and D is the direction, in which the head will move, either left or right.

• q0 ∈ Q is the initial state of the Turing machine

• B is the blank symbol, B ∈ Γ, B /∈ Σ, and is the only member of Γ that can occur infinitely
often on the tape

• F is the set of termination states

In much the same way, RNNs receive an input at each timestep, which they manipulate given
their internal state and weight matrices, in which the rule table is encoded. It is shown by
Siegelmann et al. [17] that RNN models are indeed Turing complete, meaning that they can,
provided carefully chosen weights, simulate any computer program. This is however a purely
theoretical postulation and can only occur when the hidden state of the network is split into two
stacks and the precise interaction between them is encoded in the weights, thereby simulating
a queue data structure. In practice, however, this is hardly feasible and becomes exponentially
more difficult as task complexity increases.

By augmenting a recurrent neural network with fully differentiable external memory with content-
based search, the resulting model is much more akin to the von Neumann architecture and so,
not only is it capable of simulating any real computer and it’s capabilities, but it is also much
more efficient, since it segregates the learning task from the memory interactions, thereby greatly
decreasing the complexity of tuning the weights.
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3 Proximal Policy Optimization

3.1 Motivation for choosing PPO

In order to achieve the RL objective, the agent optimizes a policy function, an artificial neural
network with parameters θ. There are two ways to achieve this without explicitly knowing the
system dynamics (model-free algorithms) - policy optimization and Q-learning.

Before elaborating on the two methods, let us first introduce some necessary nomenclature:

• Value function:

V (st) =

T∑
t′=t

Eπθ [γ
t′−tr(st′ , at′)|st]

where πθ is the current policy; T is the time horizon (when considering infinite time horizon
problems limt′→∞ γt

′−t = 0 for γ ∈ (0, 1)); γ is a discount factor.

The value function can be interpreted as the average reward left after the current state
before the termination of the episode. Naturally then, states with a higher value function
are more advantageous for the agent.

• Q-function:

Q(st, at) =

T∑
t′=t

Eπθ [γ
t′−tr(st′ , at′)|st, at]

The Q-function differs from V (st) in that, rather than computing the average reward left
given the current state, it provides the rewards left after being at a given state and taking
a certain action. We can therefore derive the following two equations:

V (st) = Eat∼πθ(at|st)[Q(st, at)]

Q(st, at) = r(st, at) + γV (st+1)

• Advantage function:
A(st, at) = Q(st, at)− V (st)

The advantage function signifies how much an action is better (or worse) than the average
action.

3.1.1 Policy Optimization

Policy optimization algorithms model the policy as a function mapping from states and actions
to a probability distribution and they optimize a neural network to approximate this function.
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Therefore, the fundamental objective of any policy gradient algorithm is to derive

θ∗ = argmax
θ

: Eτ∼πθ [r(τ)]

Prevalent policy optimization algorithms include Policy Gradients, actor-critic methods (A2C,
A3C)[11], Trust Region Policy Optimization [14] and Proximal Policy Optimization [16].

3.1.2 Q-learning

Q-learning derives the optimal policy indirectly by selecting the action that maximizes the Q-
function at the present state.

π(at|st) =


1− ε at = argmax

a′t

Q(st, a
′
t)

ε ∀at

where ε is a small number, which allows for exploration by selecting a random action at ∼ U(A)

with probability ε .

The seminal and most widely used Q-learning algorithm is Deep Q-Network (DQN) [12], which in
its classic form approximates the Q-function with a deep neural network, trained in a supervised
manner through fitted Q-iteration.

While Q-learning algorithms have shown outstanding results, they are more prone to instability
than policy optimization, since they learn a Bellman equilibrium, which is much more arduous
than a state-action mapping. For that reason, we have opted against using them.

3.2 The PPO algorithm

The Proximal Policy Optimization algorithm (PPO) [16] performs incredibly well and has good
sample efficiency, all whilst maintaining relative simplicity, making it easy to tune. It is due
to those characteristics that it has become an industry standard and benchmark for any new
algorithm, therefore it is a natural choice for bedrock of our memory-augmented algorithm.

PPO originates from the Monotonic Improvement Theory, which is created to address some innate
problems with Policy Gradient methods, namely the inequivalence between gradient descent steps
taken in parameter space and how they impact the policy. Due to the on-policy nature of Policy
Gradients, one cannot reuse trajectories from old policies and one needs to generate samples after
each update. Whilst this can be mitigated through importance sampling, the weight term that
is added is incredibly unstable and tends to either vanish or explode (for details, view Appendix
A). PPO solves this by deriving an objective, in which a single sample for the importance weight
at each timestep is used.
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Rather than the traditional policy optimization objective (maximize discounted rewards), PPO
utilizes a surrogate objective, which, on a high level, seeks to maximize the improvement of
the policy, all whilst keeping within a certain predetermined distance from the old policy, the
samples from which are used to evaluate the objective. This bound on the difference between
the policies can be achieved by computing their KL-divergence, however a much computationally
cheaper and just as effective in practice operation is to clip the ratios of the probabilities at each
timestep. In this manner, the steps taken reflect distance in policy space, instead of parameter
space, which greatly aids convergence success.

The PPO surrogate objective is

Lθk(θ) = Eτ∼πθk

[ T∑
t=0

min
[
Rt(θ)Â

πθk
t , clip(Rt(θ), 1− ε, 1 + ε)Â

πθk
t

]]
where

• Rt(θ) =
πθ(at|st)
πθk(at|st)

are the probability ratios;

• θk is the last policy, from which samples have been generated;

• clip(k, a, b) = argminc∈[a,b] : |c− k| gives the closest number to k within the interval [a, b];

• ε is the clip parameter;

• Âπθkt are the estimated advantages of the trajectories from θk. We employ a critic network
with parameters ϕ to compute the value functions (updated using standard mean squared
error loss; targets are Monte Carlo estimates), from which we derive the advantages by
utilizing Generalized Advantage Estimation [15]

Ât =

T−t−1∑
k=0

(γλ)k
(
rt+k + γV ϕ(st+k+1)− V ϕ(st+k)

)
where γ is the discount factor and λ is a parameter controlling the bias/variance trade-off
in the estimation of the advantages.

It is worth noting that although the advantages are evaluated on trajectories from πθk ,
their estimates are computed with the parameters of the current network ϕ.

The policy is optimized by taking gradient descent steps via the Adam algorithm [9] for K epochs
before updating the target policy and generating new trajectories.
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Algorithm 1: The PPO algorithm

Initialize θ, ϕ, θk;
for m in 1:Iterations do

generate (partial) trajectories τ on policy πθk ;
for K in 1:Epochs do

estimate advantages Âπθk with parameters ϕ;
evaluate Lθk(θ);
compute LV (ϕ) = 1

2N

∑N
i=1(V ϕi − yi)2;

calculate loss L = −Lθk(θ) + LV (ϕ);
take gradient descent step via Adam:

θ ← θ − α∇θ;
ϕ← ϕ− α∇ϕ;

end
Update policy parameters: θk ← θ;

end

4 Differential Neural Computer

Here we describe the DNC architecture in detail.

At the heart of the DNC model is a controller network, for which we use a standard deep LSTM
architecture. It is responsible for processing the input data and managing interactions with the
memory matrix. Read operations are handled by R read heads, each of which computes a read
weighting wr,it , given which data is read from the memory matrixMt ∈ RN×W , according to either
a content-based lookup mechanism or based on the order information was written in. A single
write head controls the writing procedure thought the write weighting wwt , utilizing dynamic
memory allocation, which determines the locations where information can be overwritten.
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The DNC model structure

4.1 Controller

The controller is what is responsible for both managing read/write operations and deriving the
solution of the task. At each timestep t, it receives R read vectors of length W , one from
each read head, along with the input vector Xt, which are all concatenated to form the LSTM
input.

χt =[Xt, r
1
t−1, r

2
t−1, . . . r

R
t−1]

Xt ∈ RX , rit−1 ∈ RW i ∈ [1 : R]
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The input is then passed to all layers of the LSTM as follows:

ilt = σ(Wi[χt, h
l−1
t , hlt−1] + bi)

f lt = σ(Wf [χt, h
l−1
t , hlt−1] + bf )

slt = f lts
l
t−1 + ilttanh(Ws[χt, h

l−1
t , hlt−1] + bs)

olt = σ(Wo[χt, h
l−1
t , hlt−1] + bo)

hlt = olttanh(slt)

The DNC may use either the output of all layers [h1t , h
2
t , . . . , h

L
t ] or only that of the last layer

hLt . We assume all outputs are used.

The network then diverges to two linear layers, akin to the Dueling Networks architecture [20] -
one layer transforms the LSTM output to the DNC output size νt = Wy[h1t , h

2
t , . . . , h

L
t ], νt ∈ Ry

and the other layer returns an interface vector ξt = Wξ[h
1
t , h

2
t , . . . , h

L
t ], ξt ∈ R2W×R+4W+7R+3,

on which we elaborate later.

Finally, νt is combined with the newly read vectors to form the DNC output.

yt = νt +Wr[r
1
t , r

2
t , . . . , r

R
t ]

4.2 Interfacing with the memory

The aforementioned interface vector ξt carries the necessary instructions for the read and write
heads. It is split as follows:

ξt =[kr,1t , . . . ,kr,Rt , β̂r,1t , . . . , β̂r,Rt , m̂r,1
t , . . . , m̂r,R

t , µ̂1
t , . . . , µ̂

R
t , s

φ,1
t , . . . , sφ,Rt , sb,1t , . . . , sb,Rt ,

kwt , β̂
w
t , m̂

w
t , êt, vt, f̂

1
t , . . . , f̂

R
t , ĝ

a
t , ĝ

w
t ]

where

• kr,it ∈ RW is the lookup key for read head i; lookup keys act as search terms and are used
in the content-based lookup mechanism

• βr,it = oneplus(β̂r,it ) ∈ R1 is the key strength of read head i; keys are assumed to have
different impact and this is reflected in their key strength

• mr,R
t = σ(m̂r,R

t ) ∈ RW is the search mask for read head i; the lookup key might only
include a partial information to seek in the rows of the memory matrix, similar to keywords.
Subsequently, it is imperative that the rest of the key is masked, as to prevent noise in the
lookup operation.

1oneplus(x) = 1 + ln(1 + ex)
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• µit = softmax(µ̂it) ∈ R3 2 is a distribution of the 3 modes that the read head can utilize,
namely content-based reading, forward temporal sequence reading and backward temporal
reading.

• sφ,it is the sharpness parameter for the forward temporal sequence reading operation for
read head i

• sb,it is the sharpness parameter for the backward temporal sequence reading operation for
read head i

• kwt ∈ RW is the lookup key for the write head

• βwt = oneplus(β̂wt ) ∈ R is the key strength of the write head

• mw
t = σ(m̂w

t ) ∈ RW is the search mask for the write head

• et = σ(êt) ∈ RW is the erase vector, which governs how information is erased

• vt is the write vector, containing information that is to be written

• f it = σ(f̂ it ) ∈ R is the free gate of read head i, which determines whether the most recently
read-from location by the read head can be freed or not

• gat = σ(ĝat ) ∈ R is the allocation gate, which controls how much will be written based on
the allocation manager’s output and how much based on the content lookup mechanism

• gwt = σ(ĝwt ) ∈ R is the write gate, which regulates how strong the write weighting is.

4.3 Read and Write Heads

Reading from Memory

The purpose of a read head is to efficiently obtain the demanded from the controller information
from the memory matrix. To do so, each read head outputs a read weighting wr,it ∈ ∆N , where
∆N := {α ∈ RN |

∑N
i=1 αi ≤ 1} is the N -dimensional unit simplex. This weighting determines

the locations from which the head will read data from. Therefore, the read vector of the head i
is:

rit = MT
t w

r,i
t

2softmax(x)[i] =
exi∑n

j=1 e
xj

for i ∈ 1 : n
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Writing in Memory

In much the same way, the write head computes a write weighting wwt ∈ ∆N , which encodes
the locations to be overwritten. The write head receives from the controller a write vector vt
and an erase vector et, which are used to update the matrix. In addition, based on the formerly
read from location and free gates, dictating whether that data is still necessary, the write head
constructs the vector ψt ∈ RN , which deallocates unneeded information from memory.

Mt = Mt−1 ∗ ψt1T ∗ (E− wwt eTt ) + wwt v
T
t

where "∗" is element-wise multiplication and E ∈ RN×W is a matrix of ones.

Content-based Lookup

In order to be able to efficiently search in memory, a mechanism must be in place that compares
stored data to a search key. This operation is the content-based lookup, which uses a key k ∈ RW ,
a key mask m that prevents noise from impacting the search process and, finally, a key strength
β, which signifies the importance of the keyword.

We define the content-based lookup operation as:

C(M,k,m, β) = softmax
[
D(k ∗m,M ∗ 1m)β

]
where D(u, v) is the cosine similarity

D(u, v) =
uT v

|u||v|+ ε
=

∑n
i=1 uivi√∑n

i=1 u
2
i

√∑n
i=1 v

2
i + ε

u, v ∈ Rn are vectors and ε is added for numerical stability in computation.

Dynamic Memory Allocation

Just like computers with Random-access memory, the DNC utilizes a dynamic memory allo-
cation mechanism, which dictates where new information should be written given the current
state.

Firstly, the allocation manager receives the read weightings wr,it−1, i ∈ 1 : R from the previous
timestep, as well as R free gates f it ∈ [0, 1] from the interface vector and computes the vector
ψt, which shows how much of the most recently read-from location will remain after the memory
update.

ψt =

R∏
i=1

1− wr,it−1f it ψt ∈ [0, 1]N
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The next step for the allocation manager is to update its usage vector ut−1, which stores how
much of each memory location (row) is used. Since the last update, additional memory has been
written at locations determined by wwt−1 and some data that has been read can be discarded.
Therefore, the update takes the following form:

ut = (ut−1 + wwt−1 − ut−1 ∗ wwt−1) ∗ ψt

After that, an index vector ςt is constructed that contains the memory locations in ascending
order of usage (ςt[1] = argmini ut[i]), so that the rows that are least used get more data written.
Finally, the allocation vector at, signifying where new data should be written, is calculated
as:

at
[
ςt[j]

]
=
(

1− ut
[
ςt[j]

]) j−1∏
i=1

ut
[
ςt[i]

]

Write Weighting

Along with the allocation vector, the write head can also choose to write based on content and
so, we also have a content write weighting

cwt = C(Mt−1,k
w
t ,m

w
t , β

w
t )

In order to interpolate between the content weighting and the allocation vector, the allocation
gate gat , outputted by the controller, is utilized. Furthermore, other than writing based on usage
or content, the head might choose not to write at all, therefore the gate gwt is the final component
in the computation of the write weighting.

wwt = gwt

(
gat at + (1− gat )cwt

)

Temporal Memory Linkage

In some operations, the order data was written in might be important and, for that reason, a
record of this information is kept in the Temporal Link Matrix Lt ∈ [0, 1]N×N , with Lt[i, j]

showing to what degree location i was written to after location j.

First we define pt ∈ ∆N as a vector, whose i-th element signifies the extent to which location i
is the last one written to. The value of pt at the next timestep is computed as:

pt =

(
1−

N∑
i=1

wwt [i]

)
pt−1 + wwt

The update of the temporal link matrix should remove old and redundant links and add new
ones, therefore

Lt[i, j] =
(

1− wwt [i]− wwt [j]
)
Lt−1[i, j] + wwt [i].pt−1[j]
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Having that information at its disposal, the read head can generate a forward and backward
weighting φit and bit, based on the respective direction of the sequence they trace.

φit = Ltw
r,i
t−1 bit = LTt w

r,i
t−1

However, at each timestep, the temporal link matrix becomes more and more noisy, which hinders
performance, consequently, to solve this, an additional sharpening step is integrated.

S(u, s)[j] =
usj∑n
i=1 u

s
i

Therefore, using the scalars outputted by the controller network, the sharpened weightings for
read head i are

φit = S(Ltw
r,i
t−1, s

φ,i
t ) bit = S(LTt w

r,i
t−1, s

b,i
t )

Read Weighting

Besides the temporally-determined weightings, the read head further utilizes content-based lookup,
searching for a specific keyword. The i-th read head computes its content weighting as

cr,it = C(Mt,k
r,i
t ,m

r,i
t , β

r,i
t )

The final read weighting is interpolated according to the read mode given by the controller

wr,it = µit[1].cit + µit[2].bit + µit[3].φit

5 Experiments

We examine and scrutinize the performance of the DNC on classic control and ATARI tasks,
starting with Cartpole - a benchmark problem from the OpenAI Gym framework, in which the
agent has to balance a pole of variable length (by default: 1m) on a cart, keeping it within a
specified angle θ (by default: 12◦) from the upright position.

The baseline with which we compare the results of the DNC is that of a standard LSTM cell.
Notwithstanding their generality and successes in other fields such as Natural language process-
ing, LSTM networks are notoriously unstable in model-free reinforcement learning, as a result
of which feedforward networks are usually preferred. This volatility in training LSTMs is in
large part due to the credit assignment problem [10], consequently of which not only is it ardu-
ous to pinpoint the weights that are responsible for a specific outcome (structural assignment),
but further the action at which timestep contributed to the final state of the system (temporal
assignment).
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Since the DNC uses a LSTM controller, it suffers from the same issues, which may even be
exacerbated due to the larger network size, attributing to the necessity to learn an efficient
reading and writing procedures.

In order to stabilize training and ensure reproducibility of our results, multiple measures and
heuristics are applied:

• neural network size is kept to a minimum, respecting the computational difficulty of the
task, as to alleviate the structural credit assignment problem;

• duelling networks: rather than employing two separate networks for policy and value esti-
mation, a single controller (LSTM or DNC) is utilized, the output of which is subsequently
passed onto linear layers, which are specific for their respective task;

• softmax temperature annealing: in order to assure exploration of state and action space,
temperature is added to the softmax function at the initial stages of training, which is then
annealed;

• to further encourage exploration, the entropy of the action distribution is subtracted from
loss;

• gradient clipping: as a preventative measure against exploding gradients, their L2 norm is
restricted to a certain value, which, if exceeded, leads to the gradient being clipped;

• value loss clipping: per the aversion of overestimation of the value functions outputted by
the network, which would cause action loss to be reduced, a PPO-like clipped objective is
utilized

LVCLIP =
1

2

N∑
i=1

(min(V̂ ϕi − yi, clip(V̂
ϕ
i , V̂

ϕ′

i − ε, V̂
ϕ′

i + ε)− yi))2

where yi are the target values, ϕ′ are the parameters of the old policy, therefore the clipped
objective restricts the value network from diverging within more than an ε distance away
from the old policy.

In addition to testing for convergence speed, which we postulate would be much faster, owing to
the capability to utilize memory and remember important data from the environment, such as
the task parameters, we further test for resistance to input noise. Due to the bigger flexibility in
training and computational structure of the DNC, we hypothesize that it would be more robust
and would be able to solve the task consistently with higher levels of Gaussian noise present in
the input state.

We run the DNC and LSTM on the basic Cartpole-v1 environment from OpenAI Gym, adding
Gaussian noise to the input of the network, in order to test for robustness during training.
The variance of the noise is derived from the states of the update batch, taking on values
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σ2 = kVars∼πθk (s) where k is some constant. Additionally, we examine how robust the networks
are during test time, after they are successfully trained.

6 Results

In the table below are described the results from the experiments. In all cases during training,
the DNC architecture vastly outperforms the traditional LSTM, often improving the conver-
gence speed by more than 60%. This confirms our postulation that the DNC is fundamentally
a better and therefore faster learner. In addition, we observed strong correlation between suc-
cessful learning and high memory usage, which means that a successful solution to the task
is highly dependent on effective exploitation of the memory matrix. Furthermore, unlike the
LSTM, the DNC, once having gathered enough experience, rapidly learns and converges to an
optimal solution, which we attribute to learning those aforementioned efficient memory operation
controls.

Noise LSTM DNC

0 23543 8860
1
3σ 31031 11192
σ 26992 11795
2σ 27147 11173
4σ 20967 10875

Figure 2: Average conversion speed in Cartpole-v1 (more than 10 samples).
Gaussian noise (µ = 0, σ is a multiple of the standard deviation of a sample batch) is added to

the input state to test for robustness during training.

Similarly, the DNC consistently achieves better results than the LSTM regarding the degradation
in performance as noise is added to the input state at test time. This we again ascribe to the
fact that the DNC can store structured data in its memory matrix, which aids to cancel the
noise.
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Figure 3: Performance of trained DNC and LSTM networks when noise is added to the state.
σ is the standard deviation of the states from 5000 episodes, played with a random policy.

100% is the average reward achieved by the networks without noise, based on 1000 episodes.

7 Conclusion and Future Development

In this paper were discussed the applications of the Differentiable Neural Computer in deep
model-free reinforcement learning. We have shown that great potential lies with the use of such
memory-augmented architectures, stemming from their superiority in training speed, robustness
and their ability to perform computational operations, as well as purely arithmetic.

Further development will be to scrutinize whether the DNC can infer a solution directly from
pixels, just as is the case with human players of ATARI games. We shall test our architecture
on actual compute tasks, namely Montezuma’s Revenge, whose solution includes a conditional
statement. We further wish to analyze how the data structures contained in the memory matrix
compare with those in the optimal solution of the tasks. Finally, we believe, stemming from the
similarities between our architecture and an actual computer and from the results so far, that
this model could be able to learn ATARI games from RAM state, which has not been possible
so far to the best of our knowledge.
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Appendix A

Advantages of the PPO algorithm

The main advantages of the PPO algorithm are its simplicity, its sample efficiency and robust-
ness.

Sample Efficiency

The on-policy nature of policy gradient methods require them to generate new trajectories each
time an update occurs. One way to alleviate this problem is to use importance sampling, meaning
that we use imported samples from an old policy. Unfortunately, this doesn’t amount to good
performance in practice, due to instability in the weight that is applied to the objective.

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

log πθ(at|st)Aθ(st, at)

]

This is the gradient of the objective in Policy Gradients. Advantages are evaluated through
Monte Carlo sampling in vanilla PG or a separate critic network, which fits the Value function
in actor-critic methods, such as A2C.

When using importance sampling the network update becomes:

∇θJ(θ) = Eτ∼πθ

[
T∑
t=0

log πθ(at|st)Aθ(st, at)

]

= Eτ∼πθ [f(τ)] =

∫
∇θπθ(τ)f(τ)dτ

=

∫
∇θ

πθ′(τ)

πθ′(τ)
πθ(τ)f(τ)dτ

=

∫
∇θπθ′(τ)

πθ(τ)

πθ′(τ)
f(τ)dτ

= Eτ∼πθ′

[
πθ(τ)

πθ′(τ)
f(τ)

]
= Eτ∼πθ′

[
πθ(τ)

πθ′(τ)

T∑
t=0

log πθ(at|st)Aθ(st, at)

]

πθ(τ)

πθ′(τ)
=

p(s1)
∏T
t=1 πθ(at|st)p(st+1|st, at)

p(s1)
∏T
t=1 πθ′(at|st)p(st+1|st, at)

=

∏T
t=1 πθ(at|st)∏T
t=1 πθ′(at|st)
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The cumulative product of ratios is what causes this instability and what makes the use of
importance sampling in this manner considerably arduous. PPO solves this by deriving an
objective function which uses a single sample for evaluation of the importance weight.

Robustness

As described in Section 3, PPO uses a surrogate objective function, which aims to maximize the
improvement to the old policy, while remaining in relatively close proximity in policy space. We
now derive this objective function mathematically.

Let us first evaluate the difference in performance between two policies π and π′.

J(π) = Eτ∼π[r(τ)]

=⇒ J(π′)− J(π) = Eτ∼π′ [r(τ)]− Eτ∼π[r(τ)]

= Eτ∼π′ [r(τ)]− V π(s0) = Eτ∼π′ [r(τ)]− Eτ∼π′ [V π(s0)]

= Eτ∼π′ [r(τ)]− Eτ∼π′
[ ∞∑
t=0

γtV π(st)−
∞∑
t=1

γtV π(st)

]

= Eτ∼π′ [r(τ)] + Eτ∼π′

[ ∞∑
t=0

γt+1V π(st+1)−
∞∑
t=0

γtV π(st)

]

= Eτ∼π′

[ ∞∑
t=0

γt
(
r(st, at) + γV π(st+1)− V π(st)

)]

= Eτ∼π′

[ ∞∑
t=0

γtAπ(st, at)

]
This is the so called Relative Policy Performance Identity and is the bedrock of the Monotonic
Improvement Theory.

We define a discounted future state distribution dπ(s) = (1−γ)
∑∞
t=0 γ

tP (st = s|π), which gives
the probability of ever being in a given state. Using this distribution, the relative performance
of the two policies now is

J(π′)− J(π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st, at)

]
=

1

1− γ
Ea∼π′,s∼dπ′

[
Aπ(s, a)

]
=

1

1− γ
Ea∼π,s∼dπ′

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
If π and π′ are sufficiently close to each other in policy space, dπ

′ ≈ dπ

=⇒ J(π′)− J(π) ≈ 1

1− γ
Ea∼π,s∼dπ

[
π′(a|s)
π(a|s)

Aπ(s, a)

]
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We denote the RHS with Lπ(π′) which we call a surrogate objective function and the goal of the
algorithm now is

max
θ′
Lπθ (πθ′) = max

θ′
Eτ∼πθ

[ ∞∑
t=0

π′θ(at|st)
πθ(at|st)

Aπθt (st, at)

]
However, this is limited by the condition for proximity of the two policies. One way to formalize
this is to use the KL-divergence of the policies, performing constrained optimization or using
it as part of the loss function. Notwithstanding their theoretical accuracy, these methods are

computationally expensive and, therefore, a heuristic is employed - the ratios
π′(a|s)
π(a|s)

are clipped

between the values 1− ε and 1 + ε, thereby preventing the current policy to diverge too far from
the old one. Furthermore, an extra minimization term is added, in order to additionally limit
and discourage vast differences between policies.

max
θ′
Lπθ (πθ′) = max

θ′
Eτ∼πθ

[ ∞∑
t=0

min
[π′(at|st)
π(at|st)

Âπθt , clip
(π′(at|st)
π(at|st)

, 1− ε, 1 + ε
)
Âπθt

]]

Appendix B

Architecture Details and Hyperparameters

The agent acts in an OpenAI Gym environment, taking actions and observing states and rewards
at each timestep (policy rollout). The policy is represented by a neural network with the following
structure:

• it receives as input a vector, representing the current state of the environment;

• this state vector subsequently passes through an affine transformation layer, so that the
network can learn to contextually extract the most important information from the input

• the output of that linear layer is then inputted into the DNC (or LSTM)

• after that the output of DNC (LSTM) is passed to two different one-layer artificial neural
networks with tanh activation functions, one of which is responsible for the value estima-
tion, the other for the action distribution

Below are displayed the architecture and the hyperparameters used (Figure 1, Figure 2).
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Figure 4: A graphic representation of the architecture.

Parameter LSTM DNC

learning rate 5e-3 64e-4
Adam betas (0.9, 0.999) (0.9, 0.999)
discount γ 0.98 0.98
GAE λ 0.97 0.97

epochs K 4 4
PPO clip ε 0.2 0.2

gradient clipping 5 5

affine layer size 8 8
network output size 32 16

action layer 16 8
value layer 16 8

row length W - 4
number of rows N - 16
controller layer size - 20

number of read heads R - 2

Figure 5: Hyperparameter settings
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